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Abstract

The lateral movement of the three-dimensional (3-D) cellular ¯ame at low Lewis numbers is numerically investigated. The

equation used is the compressible Navier±Stokes equation including a one-step irreversible chemical reaction. We superimpose the

hexagonal disturbance with the peculiar wave number on the stationary plane ¯ame and calculate the evolution of the disturbed

¯ame. When the Lewis number is unity, i.e., only the hydrodynamic e�ect has an in¯uence on the ¯ame instability, the stationary

cellular ¯ame is formed. When the Lewis number is lower than unity, i.e., the di�usive-thermal and hydrodynamic e�ects have an

in¯uence, the laterally moving cellular ¯ame is formed. With a decrease in the Lewis number, the laterally moving velocity of the cell

increases. The laterally moving velocity of the three-dimensional cellular ¯ame is much larger than that of the two-dimensional (2-D)

cellular ¯ame. Because, the increment of local temperature at the convex ¯ame front toward the unburned gas in the three-

dimensional ¯ame is great compared with that in the two-dimensional ¯ame. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

Premixed reactive gases do not always burn uniformly, and
in many cases cellular ¯ames appear. Cellular structures are
formed owing mainly to the intrinsic instability of premixed
¯ames. We know that the hydrodynamic e�ect caused by
thermal expansion (Darrieus, 1938; Landau, 1944) and the
di�usive-thermal e�ect caused by the preferential di�usion of
mass versus heat (Barenblatt et al., 1962; Sivashinsky, 1977;
Joulin and Mitani, 1981) are essential to intrinsic instability

International Journal of Heat and Fluid Flow 20 (1999) 649±656
www.elsevier.com/locate/ijh�

Notation

A0 non-dimensional initial amplitude, referred to L
B non-dimensional frequency factor, referred to

U/L
D di�usion coe�cient
E non-dimensional activation energy, referred to

RT0

e non-dimensional stored energy, referred to q0U 2

L characteristic length
Le Lewis number (� a/D)
Lec critical Lewis number (� 1ÿ 2T 2

f =E�Tf ÿ 1�)
Pe Peclet number (�UL/a)
Pr Prandtl number (� m/a)
p non-dimensional pressure, referred to q0U 2

Q non-dimensional heating value, referred to U 2

R universal gas constant
Su non-dimensional burning velocity, referred to U
T non-dimensional temperature, referred to T0

T0 temperature of the unburned gas
Tf non-dimensional adiabatic ¯ame temperature,

referred to T0

t non-dimensional time, referred to L/U
U characteristic velocity
VL non-dimensional laterally moving velocity of the

cell, referred to U
u, v, w non-dimensional velocities in x-, y-, and

z-directions, referred to U

x, y, z coordinates
Y mass fraction of the unburned gas

Greek
a thermal di�usivity
c ratio of two speci®c heats
DL non-dimensional moved distance of the cell,

referred to L
d non-dimensional preheat zone thickness,

referred to L
ky , kz non-dimensional wavelengths in y- and

z-directions, referred to L
k2 non-dimensional peculiar wavelength in the two

dimensional ¯ame, referred to L
m kinematic viscosity
q non-dimensional density, referred to q0

q0 density of the unburned gas
x non-dimensional reaction rate, referred to q0U/L
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(Sivashinsky, 1983; Clavin, 1985; Williams, 1985; Law, 1988).
In particular, the hydrodynamic e�ect is indispensable to the
¯ame instability since all ¯ames in gaseous mixtures are at-
tended with thermal expansion.

The cellular ¯ames exhibit temporal motion under certain
conditions (Markstein, 1964; Sabathier et al., 1981; Gololobov
et al., 1981; Gorman et al., 1994; Pearlman and Ronney, 1994).
To study the temporal motion of the ¯ame front, non-linear
analysis was performed, based on the di�usive-thermal model,
including the so-called Kuramoto±Sivashinsky (KS) equation,
and on the Michelson±Sivashinsky (MS) equation (Michelson
and Sivashinsky, 1982; Sivashinsky, 1983; Hyman and Nico-
laenko, 1986; Denet and Haldenwang, 1992). It was shown
that the temporal motion of cellular ¯ames appears at low
Lewis numbers. However, the results obtained in analyses
based on the di�usive-thermal model are valid only for ¯ames
with small enough heat release since the hydrodynamic e�ect is
disregarded in this model. The results obtained through the
MS equation are valid for ¯ames with small expansion coef-
®cients since the constant-density approximation is used in the
derivation of this equation. In addition, both the KS and MS
equations are available for weakly non-linear analysis.

In general, premixed ¯ames, e.g., hydrogen±air and meth-
ane±air ¯ames with stoichiometric conditions, have consider-
ably large heat release. Thus, the hydrodynamic e�ect caused
by thermal expansion plays an important role in the instability
of premixed ¯ames. This means that the di�usive-thermal
model is invalid for these ¯ames. Therefore, we need to use the
compressible Navier±Stokes (NS) equation, which is valid for
large heat release, in the study of the temporal motion of
premixed gaseous ¯ames.

The numerical calculation based on the compressible NS
equation was performed to study the instability of ¯ame
fronts, where the hydrodynamic e�ect was taken into account
(Denet, 1993; Patnaik and Kailasanath, 1994; Denet and
Haldenwang, 1995 Kadowaki, 1995; Bychkov et al., 1996). The
unstable motion of ¯ame fronts and the structure of cellular
¯ames were investigated in detail, and it was reported that the
hydrodynamic e�ect has a great in¯uence on the ¯ame insta-
bility. Thereafter, the lateral movement of cellular ¯ames was
numerically studied, in which the compressible NS equation
was used (Kadowaki, 1997). It was shown that laterally
moving cells appear not only at Le < Lec but also at
Lec < Le < 1, which is di�erent from the results obtained in
the calculations based on the di�usive-thermal model (Mar-
golis and Matkowsky, 1983; Bayliss and Matkowsky, 1992;
Daumont et al., 1997), and that the non-linear e�ect of the
¯ame front and the Lewis number e�ect are essential factors in
the appearance of the lateral movement of cells.

The numerical calculation on the lateral movement of cells
dealt only with the two-dimensional ¯ame (Kadowaki, 1997).
However, the three-dimensional ¯ame is usually observed un-
der most experimental conditions since the two-dimensional
¯ame requires a special experimental setup. In addition, we
know the di�erence in structure between two- and three-di-
mensional cellular ¯ames. For example, the disposition of cells
and the spacing between cells in the three-dimensional ¯ame
are considerably di�erent from those in the two-dimensional
¯ame (Kadowaki, 1996). Thus, it is very important to study the
lateral movement of the three-dimensional cellular ¯ame and
to compare with the results of the two-dimensional ¯ame.

In the present study, we calculate the three-dimensional
unsteady reactive ¯ow to investigate the lateral movement of
cellular ¯ames at low Lewis numbers using the compressible
NS equation. We obtain the laterally moving velocity of the cell
and compare with that of the two-dimensional ¯ame. More-
over, we study the mechanism of the appearance of the lateral
movement of two- and three-dimensional cellular ¯ames.

2. Governing equations

We consider the single-reactant ¯ame, where the abundant
component is excessive and the chemical reaction is controlled
only by the de®cient component. We calculate the three-di-
mensional unsteady reactive ¯ow and take the direction tan-
gential to the ¯ame front as the yz-surface, with the gas
velocity in the positive x-direction. In the derivation of the
governing equations, the following assumptions are used: (1)
Only two species, unburned and burned gases, are present.
Both gases are ideal and have the same molecular weights and
the same Lewis numbers. (2) The chemical reaction is an
exothermic one-step irreversible reaction, and the reaction rate
has the Arrhenius form. (3) The speci®c heats and transport
coe�cients are constant throughout the whole region. (4) The
radiation, bulk viscosity, Soret e�ects, Dufour e�ects, and
pressure gradient di�usion are negligible, and the viscous term
in the energy equation is disregarded.

The ¯ow variables in the governing equations are non-di-
mensionalized by the characteristic length, the characteristic
velocity, and the density of the unburned gas. The character-
istic length is 80 times the preheat zone thickness, where the
latter is de®ned as the thermal di�usivity divided by the
burning velocity. The characteristic velocity is the isothermal
sound velocity of the unburned gas. The governing equations
are written in the formation of the conservation law
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S �

0
0
0
0

QBqY exp�ÿE=T �
ÿBqY exp�ÿE=T �

0BBBBBB@

1CCCCCCA:
The equation of state is

p � qT : �2�

3. Numerical procedures

The physical parameters are given to simulate a gas mixture
of which the burning velocity is 0.83 m/s and the adiabatic
¯ame temperature is 2086 K at atmospheric pressure and room
temperature. The non-dimensional burning velocity
Su� 2.5 ´ 10ÿ3, and the non-dimensional adiabatic ¯ame
temperature Tf � 7.0. Non-dimensional parameters used are
Pe� 3.2 ´ 104, Pr� 1.0, c� 1.4, Q� 21, and E� 70. For the
study of the Lewis number e�ect, we take Le� 0.5, 0.6, 0.7,
0.8, and 1.0, since we are interested only in the lateral move-
ment of cellular ¯ames at Le6 1. The frequency factor is de-
termined by the condition under which the ¯ame velocity of a
plane ¯ame is equal to the set burning velocity (� 2.5 ´ 10ÿ3).
For the ¯ames of Le� 0.5, 0.6, 0.7, 0.8, and 1.0, we set
B� 2.17 ´ 106, 1.85 ´ 106, 1.62 ´ 106, 1.44 ´ 106, and
1.20 ´ 106, respectively.

Initial conditions are provided by the solution of the sta-
tionary plane ¯ame (Fig. 1). On the ¯ame we superimpose a
hexagonal disturbance (Christopherson, 1940) since well-reg-
ulated hexagonal cells are experimentally observed in ¯ames
with broad enough surfaces (Searby and Quinard, 1990) and
the hexagonal pattern of cells are shown analytically and nu-
merically (Shtilman and Sivashinsky, 1990). The displacement
of the ¯ame front in the x-direction due to the disturbance is
given by

sin�2py=ky� sin�2pz=kz� ÿ cos�4pz=kz�=2; �3�

where the relation kz� ky
p

3 is realized. The wavelength is set
equal to the wavelength corresponding to the maximum
growth rate, i.e., the peculiar wavelength, since the spacing
between cells on the ¯ame is equivalent to the peculiar wave-
length. The peculiar wavelength is obtained from the disper-
sion relation, which is given by the calculation for su�ciently
small disturbances. The peculiar wavelengths for Le� 0.5, 0.6,
0.7, 0.8, and 1.0 in the three-dimensional ¯ame are shown in
Table 1, where the non-dimensional preheat zone thickness
d� 1/80� 1.25 ´ 10ÿ2. In addition, the peculiar wavelengths in
the two-dimensional ¯ame are shown in Table 2, where k2 is
(1/2)
p

3 times ky (Kadowaki, 1996). Since the peculiar wave-
length is chosen in the present calculation, neither cell merging
nor tip splitting is observed. This behavior of the ¯ame front is
obtained when shorter and longer wavelengths are chosen
(Denet, 1993; Denet and Bonino, 1994).

Boundary conditions are as follows: In the x-direction,
except for the velocity of inlet ¯ow, free ¯ow conditions are
used upstream and downstream. The inlet-¯ow velocity is set
to the burning velocity so that the ¯ame position will barely
move. In y- and z-directions, spatially periodic conditions are
used, since broad enough ¯ame surfaces are treated in the
present study. Thus, the results on the temporal motion of
fronts are valid for ¯ames with broad enough surfaces.

The explicit MacCormack scheme (MacCormack and
Baldwin, 1975), which has second-order accuracy in both time
and space, is adopted for the calculation. The computational
domain is double the characteristic length in the x-direction
and one wavelength of the disturbance in y- and z-directions,
which is resolved by a 261 ´ 31 ´ 53 variably spaced grid for
Le� 0.6, 0.7, 0.8, and 1.0, and by a 261 ´ 46 ´ 79 grid for
Le� 0.5. The minimum grid size in the x-direction is
2.5 ´ 10ÿ3. These grids are ®ne enough to prevent numerical
errors from contaminating the solutions. The time-step inter-
val is 5 ´ 10ÿ4. For one time step, required CPU times are 0.34
and 0.75 s for the 261 ´ 31 ´ 53 and 261 ´ 46 ´ 79 grids, re-
spectively, on a FUJITSU VPP500 supercomputer. Each
computation time ranges between 15 and 19 h.

Fig. 1. Distributions of the velocity, the temperature, the mass fraction of the unburned gas, and the reaction rate in the stationary plane ¯ame for

Le� 0.5.
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4. Results and discussion

First, we set Le� 0.5 to study the di�usive-thermal and
hydrodynamic e�ects on the lateral movement of cellular
¯ames. We superimpose the disturbance with A0� 1 ´ 10ÿ2,
ky � 0.166, kz� 0.288 on the plane ¯ame and calculate the
evolution of the disturbed ¯ame front. The ¯ame fronts at
t� 0, 15, and 40 are illustrated in Fig. 2. The schematic do-
main is 3ky � 2kz. The location of the ¯ame front is de®ned as
the position where T� 5.0. The unburned gas ¯ows in from the

bottom at the burning velocity, and the burned gas ¯ows out
to the top. The disturbance grows initially with time, and its
amplitude reaches the maximum. The ¯ame front changes
from a sinusoidal to a cellular shape (t� 15). Thereafter, the
cellular ¯ame moves upstream. This denotes that the ¯ame
velocity has increased, which is due to the increment of the
¯ame-surface area and to the variation in local ¯ame velocity.

To study the lateral movement of cells, we illustrate the
distributions of cells in the yz-plane at t� 0, 15, and 40 in
Fig. 3, where the schematic domain is 3ky � 2kz. We take no-
tice of the cell which is written `cell' in the ®gure. The spacing
between hexagonal cells is equal to ky (� 13.3 d), and it is
longer than that of the two-dimensional ¯ame (� 11.5d). After
the formation of the cellular ¯ame, the cell moves to the right-
bottom. This indicates that the three-dimensional cellular
¯ame moves laterally, just as the two-dimensional cellular
¯ame did. To obtain the laterally moving velocity of the cell,
we show the moved distance of the cell in the yz-plane in
Fig. 4. From the gradient of the straight line, we ®nd that the
laterally moving velocity VL� 4.78 ´ 10ÿ3 (� 1.91Su). This
value is much larger than that of the two-dimensional ¯ame
(� 0.79Su).

We next set Le� 0.6 and superimpose the disturbance with
A0� 1 ´ 10ÿ2, ky � 0.185, kz� 0.320. The distributions of cells
at t� 0, 30, and 80 are illustrated in Fig. 5. The disturbance
superimposed grows initially, and the cellular structure of the
¯ame front appears at t� 30. After that, the cell moves to the
right-bottom, same as the Le� 0.5 ¯ame. The laterally moving
velocity of the cell is 2.37 ´ 10ÿ3 (� 0.95Su), which is smaller
than that of the Le� 0.5 ¯ame (� 1.91Su) and is larger than
that of the two-dimensional ¯ame for Le� 0.6 (� 0.41Su).

We make the Lewis number higher. We set Le� 0.8 and
superimpose the disturbance with A0� 1 ´ 10ÿ2, ky � 0.251,

Fig. 2. Flame fronts for Le� 0.5, A0� 1 ´ 10ÿ2, ky � 0.166, kz � 0.288 (t� 0, 15, and 40).

Table 2

Peculiar wavelengths for Le� 0.5ÿ1.0 in the two-dimensional ¯ame

Le k2 k2/d

0.5 0.144 11.5

0.6 0.160 12.8

0.7 0.179 14.3

0.8 0.218 17.4

1.0 0.427 34.2

Table 1

Peculiar wavelengths for Le� 0.5ÿ1.0 in the three-dimensional ¯ame

Le ky kz ky /d kz/d

0.5 0.166 0.288 13.3 23.0

0.6 0.185 0.320 14.8 25.6

0.7 0.207 0.358 16.6 28.6

0.8 0.251 0.436 20.1 34.9

1.0 0.494 0.855 39.5 68.4
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kz� 0.436. The disturbance is evolved, and the cellular ¯ame is
formed. The cell moves slowly to the right-bottom, and its
velocity is 0.17 ´ 10ÿ3 (� 0.07Su) which is considerably large
compared with that of the two-dimensional ¯ame (� 0.03Su).
When we apply the di�usive-thermal model to the ¯ames used
in the present study, we obtain Lec� 0.767 since the activation
energy is 70 and the adiabatic ¯ame temperature is 7.0 (Siva-
shinsky, 1983). In the calculations based on the di�usive-
thermal model, the lateral movement of cells appears at
Le < Lec. In the present calculation, on the other hand, lat-
erally moving cells appear not only at Le < Lec but also at
Lec < Le < 1. This di�erence is due to the compressibility of
gases.

Finally, we set Le� 1.0 to study the hydrodynamic e�ect on
the lateral movement of cellular ¯ames. The disturbance
(A0� 2 ´ 10ÿ2, ky � 0.494, kz� 0.855) superimposed on the
plane ¯ame is evolved, and the cellular ¯ame is formed (Figs. 6
and 7). However, the location of cells in the yz-plane is im-
movable, which is dissimilar to Le < 1 ¯ames. This result in-
dicates that the lateral movement of cells is not generated only
by the hydrodynamic e�ect. Thus, we know that the di�usive-
thermal e�ect has an essential role in the lateral movement.
When we set the inlet-¯ow velocity to the ¯ame velocity of the
cellular ¯ame, we obtain the stationary ¯ame. At Le < 1, on
the other hand, we do not obtain the stationary cellular ¯ame
since cells move laterally.

Fig. 3. Distributions of cells in the yz-plane for Le� 0.5, A0� 1 ´ 10ÿ2, ky � 0.166, kz� 0.288; solid, hair, and broken lines denote contours of the

¯ame front at x� 0.587, 0.593, and 0.599 (t� 0), x� 0.551, 0.591, and 0.630 (t� 15), x� 0.441, 0.475, and 0.509 (t� 40).

Fig. 4. Moved distance of the cell in the yz-plane for Le� 0.5 (t� 5±

40).
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Fig. 5. Distributions of cells in the yz-plane for Le� 0.6, A0� 1 ´ 10ÿ2, ky � 0.185, kz� 0.320; solid, hair, and broken lines denote contours of the

¯ame front at x� 0.587, 0.593, and 0.599 (t� 0), x� 0.525, 0.550, and 0.575 (t� 30), x� 0.374, 0.399, and 0.423 (t� 80).

Fig. 6. Flame fronts for Le� 1.0, A0� 2 ´ 10ÿ2, ky � 0.494, kz� 0.855

(t� 100).

Fig. 7. Distributions of cells in the yz-plane for Le� 1.0, A0

� 2 ´ 10ÿ2, ky � 0.494, kz� 0.855; solid, hair, and broken lines denote

contours of the ¯ame front at x� 0.520, 0.584, and 0.647 (t� 100).
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The laterally moving velocities of the cell, which are nor-
malized by the burning velocity, depending on the Lewis
number for two- and three-dimensional ¯ames are shown in
Fig. 8. With a decrease in the Lewis number, the laterally
moving velocity increases, since the instability level due mainly
to the di�usive-thermal e�ect increases. Moreover, the laterally
moving velocity of the three-dimensional cellular ¯ame is
much larger than that of the two-dimensional cellular ¯ame.

When the Lewis number is lower than unity, the cellular
¯ame moves laterally. When the Lewis number is unity, on the
other hand, the cell position in the yz-plane is ®xed. To study
the mechanism of the lateral movement of cells, we illustrate
the temperature distributions at the center of the cell for
Le� 0.5, 0.6, and 1.0 in Fig. 9. Since the ¯ame front at the cell
center is convex toward the unburned gas, the local tempera-
ture of Le < 1 ¯ames is raised owing to the di�usive-thermal
e�ect. Thus, the maximum temperatures of Le� 0.5 and 0.6
¯ames are higher than the adiabatic ¯ame temperature
(Tf � 7.0). The temperature has an overshoot at the convex
¯ame front, which is not observed in the Le� 1.0 ¯ame. The
physical phenomena associated with the overshoot are gener-
ally unstable. Therefore, the overshoot of temperature causes a
breaking of the re¯ection symmetry of cells, and then the lat-
eral movement of cells appears.

As the Lewis number decreases, the increment of local
temperature at the convex ¯ame front increases. Thus, the
laterally moving velocity of the cell increases. Moreover, the
increment of local temperature is great compared with that of
the two-dimensional cellular ¯ames. This is due to the di�er-
ence in the disposition of cells between two- and three-
dimensional ¯ames. Therefore, the laterally moving velocity
of the three-dimensional cellular ¯ame is much larger.

5. Concluding remarks

We have calculated the three-dimensional unsteady reac-
tive ¯ow to investigate the lateral movement of cellular ¯ames
at low Lewis numbers. When only the hydrodynamic e�ect
has an in¯uence on the ¯ame instability, the stationary cellular
¯ame is formed. When the di�usive-thermal and hydrody-

namic e�ects have an in¯uence, on the other hand, the later-
ally moving cellular ¯ame is formed not only at Le < Lec but
also at Lec < Le < 1. With a decrease in the Lewis number,
the laterally moving velocity of the cell increases, which is due
to the increase in the instability level. The laterally moving
velocity of the three-dimensional cellular ¯ame is much larger
than that of the two-dimensional cellular ¯ame. Because, the
increment of local temperature at the convex ¯ame front in
the three-dimensional ¯ame is great compared with that in the
two-dimensional ¯ame, which is due to the di�erence in the
disposition of cells.
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